Francois Chollet

Creator of Keras

We may earn commissions for purchases made via this page

Book Recommendations:

Recommended by Francois Chollet

All TensorFlow/Keras, with very readable code examples. Includes a section on StyleGAN, which will come in handy (from Amazon)

Implement various state-of-the-art architectures, such as GANs and autoencoders, for image generation using TensorFlow 2.x from scratch Key Features Understand the different architectures for image generation, including autoencoders and GANsBuild models that can edit an image of your face, turn photos into paintings, and generate photorealistic imagesDiscover how you can build deep neural networks with advanced TensorFlow 2.x features Book Description The emerging field of Generative Adversarial Networks (GANs) has made it possible to generate indistinguishable images from existing datasets. With this hands-on book, you'll not only develop image generation skills but also gain a solid understanding of the underlying principles. Starting with an introduction to the fundamentals of image generation using TensorFlow, this book covers Variational Autoencoders (VAEs) and GANs. You'll discover how to build models for different applications as you get to grips with performing face swaps using deepfakes, neural style transfer, image-to-image translation, turning simple images into photorealistic images, and much more. You'll also understand how and why to construct state-of-the-art deep neural networks using advanced techniques such as spectral normalization and self-attention layer before working with advanced models for face generation and editing. You'll also be introduced to photo restoration, text-to-image synthesis, video retargeting, and neural rendering. Throughout the book, you'll learn to implement models from scratch in TensorFlow 2.x, including PixelCNN, VAE, DCGAN, WGAN, pix2pix, CycleGAN, StyleGAN, GauGAN, and BigGAN. By the end of this book, you'll be well versed in TensorFlow and be able to implement image generative technologies confidently. What You Will Learn Train on face datasets and use them to explore latent spaces for editing new faces Get to grips with swapping faces with deepfakes Perform style transfer to convert a photo into a painting Build and train pix2pix, CycleGAN, and BicycleGAN for image-to-image translation Use iGAN to understand manifold interpolation and GauGAN to turn simple images into photorealistic images Become well versed in attention generative models such as SAGAN and BigGAN Generate high-resolution photos with Progressive GAN and StyleGAN Who this book is for The Hands-On Image Generation with TensorFlow book is for deep learning engineers, practitioners, and researchers who have basic knowledge of convolutional neural networks and want to learn various image generation techniques using TensorFlow 2.x. You'll also find this book useful if you are an image processing professional or computer vision engineer looking to explore state-of-the-art architectures to improve and enhance images and videos. Knowledge of Python and TensorFlow will help you to get the best out of this book.

Recommended by Francois Chollet

Approachable, well-written, with a great balance between theory and practice. A very enjoyable introduction to machine learning for software developers. (from Amazon)

Build cutting edge machine and deep learning systems for the lab, production, and mobile devices. Purchase of the print or Kindle book includes a free eBook in PDF format. Key Features: Understand the fundamentals of deep learning and machine learning through clear explanations and extensive code samplesImplement graph neural networks, transformers using Hugging Face and TensorFlow Hub, and joint and contrastive learningLearn cutting-edge machine and deep learning techniques Book Description: Deep Learning with TensorFlow and Keras teaches you neural networks and deep learning techniques using TensorFlow (TF) and Keras. You'll learn how to write deep learning applications in the most powerful, popular, and scalable machine learning stack available. TensorFlow 2.x focuses on simplicity and ease of use, with updates like eager execution, intuitive higher-level APIs based on Keras, and flexible model building on any platform. This book uses the latest TF 2.0 features and libraries to present an overview of supervised and unsupervised machine learning models and provides a comprehensive analysis of deep learning and reinforcement learning models using practical examples for the cloud, mobile, and large production environments. This book also shows you how to create neural networks with TensorFlow, runs through popular algorithms (regression, convolutional neural networks (CNNs), transformers, GANs, recurrent neural networks (RNNs), natural language processing (NLP), and Graph Neural Networks (GNNs)), covers working example apps, and then dives into TF in production, TF mobile, and TensorFlow with AutoML. What You Will Learn: Learn how to use the popular GNNs with TensorFlow to carry out graph mining tasksDiscover the world of transformers, from pretraining to fine-tuning to evaluating themApply self-supervised learning to natural language processing, computer vision, and audio signal processingCombine probabilistic and deep learning models using TensorFlow ProbabilityTrain your models on the cloud and put TF to work in real environmentsBuild machine learning and deep learning systems with TensorFlow 2.x and the Keras API Who this book is for: This hands-on machine learning book is for Python developers and data scientists who want to build machine learning and deep learning systems with TensorFlow. This book gives you the theory and practice required to use Keras, TensorFlow, and AutoML to build machine learning systems. Some machine learning knowledge would be useful. We don't assume TF knowledge.