Kirk Borne
Principal Data Scientist, Data Science Fellow, and Executive Advisor at Booz Allen Hamilton
Book Recommendations:
Recommended by Kirk Borne
“Advanced Natural Language Processing with TensorFlow 2 provides TensorFlow code for nearly every topic and technique presented in the book, including GitHub access to all of that code. The topics cover a broad spectrum of current NLProc techniques, applications, and use cases, specifically in the context of TensorFlow deep learning. These include sentiment analysis, transfer learning, text summarization, named entity recognition (NER), transformers, attention, natural language understanding (NLU) and natural language generation (NLG), image captioning, text classification (via a variety of methods and algorithms), and conversational AI. All your NLP favorites are here: TD-IDF, Word2Vec, Seq2Seq, BERT, RNN, LSTM, GPT, and more.” (from Amazon)
by Ashish Bansal·You?
One-stop solution for NLP practitioners, ML developers and data scientists to build effective NLP systems that can perform real-world complicated tasks Key Features Implement deep learning algorithms such as BiLSTMS, CRFs, and many more using TensorFlow 2Explore classical NLP techniques and libraries including parts-of-speech tagging and tokenizationLearn practical applications of NLP covering the forefronts of the field like sentiment analysis and generating text Book Description In the last couple of years, there have been tremendous advances in natural language processing, and we are now moving from research labs into practical applications. Advanced Natural Language Processing comes with a perfect blend of both the theoretical and practical aspects of trending and complex NLP techniques. This book is focused on innovative applications in the field of NLP, language generation, and dialogue systems. It goes into the details of applying the concepts of text pre-processing using techniques such as tokenization, parts of speech tagging, and lemmatization using popular libraries such as Stanford NLP and SpaCy. Named Entity Recognition (NER), a cornerstone of task-oriented bots, is built from scratch using Conditional Random Fields and Viterbi Decoding on top of RNNs. Taking a practical and application-focused perspective, the book covers key emerging areas such as generating text for use in sentence completion and text summarization, bridging images and text by generating captions for images, and managing dialogue aspects of chatbot design. It also covers one of the most important reasons behind recent advances in NLP - applying transfer learning and fine-tuning using TensorFlow 2. Further, it covers practical techniques that can simplify the labelling of textual data which otherwise proves to be a costly affair. The book also has a working code for each tech piece so that you can adapt them to your use cases. By the end of this TensorFlow book, you will have an advanced knowledge of the tools, techniques and deep learning architecture used to solve complex NLP problems. What You Will Learn Grasp important pre-steps in building NLP applications like POS taggingDeal with vast amounts of unlabeled and small labelled Datasets in NLPUse transfer and weakly supervised learning using libraries like SnorkelPerform sentiment analysis using BERTApply encoder-decoder NN architectures and beam search for summarizing textUse transformer models with attention to bring images and text togetherBuild applications that generate captions and answer questions about imagesUse advanced TensorFlow techniques like learning rate annealing, custom layers, and custom loss functions to build the latest deep NLP models Who this book is for This is not an introductory book and assumes the reader is familiar with basics of NLP and has fundamental Python skills, as well as basic knowledge of machine learning and undergraduate-level calculus and linear algebra. The readers who can benefit the most from this book include: Intermediate ML developers who are familiar with the basics of supervised learning and deep learning techniques Professionals who already use TensorFlow/Python for purposes such as data science, ML, research, and analysis
Recommended by Kirk Borne
“A brilliantly approachable introduction to machine learning with Python. Raschka and Mirjalili break difficult concepts down into language the layperson can easily understand while placing these examples within real-world contexts. A worthy addition to your machine learning library!” (from Amazon)
by Sebastian Raschka, Vahid Mirjalili·You?
by Sebastian Raschka, Vahid Mirjalili·You?
Applied machine learning with a solid foundation in theory. Revised and expanded for TensorFlow 2, GANs, and reinforcement learning. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesThird edition of the bestselling, widely acclaimed Python machine learning bookClear and intuitive explanations take you deep into the theory and practice of Python machine learningFully updated and expanded to cover TensorFlow 2, Generative Adversarial Network models, reinforcement learning, and best practicesBook DescriptionPython Machine Learning, Third Edition is a comprehensive guide to machine learning and deep learning with Python. It acts as both a step-by-step tutorial, and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and working examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, Raschka and Mirjalili teach the principles behind machine learning, allowing you to build models and applications for yourself. Updated for TensorFlow 2.0, this new third edition introduces readers to its new Keras API features, as well as the latest additions to scikit-learn. It's also expanded to cover cutting-edge reinforcement learning techniques based on deep learning, as well as an introduction to GANs. Finally, this book also explores a subfield of natural language processing (NLP) called sentiment analysis, helping you learn how to use machine learning algorithms to classify documents. This book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments. What you will learnMaster the frameworks, models, and techniques that enable machines to 'learn' from dataUse scikit-learn for machine learning and TensorFlow for deep learningApply machine learning to image classification, sentiment analysis, intelligent web applications, and moreBuild and train neural networks, GANs, and other modelsDiscover best practices for evaluating and tuning modelsPredict continuous target outcomes using regression analysisDig deeper into textual and social media data using sentiment analysisWho this book is forIf you know some Python and you want to use machine learning and deep learning, pick up this book. Whether you want to start from scratch or extend your machine learning knowledge, this is an essential resource. Written for developers and data scientists who want to create practical machine learning and deep learning code, this book is ideal for anyone who wants to teach computers how to learn from data. Table of ContentsGiving Computers the Ability to Learn from DataTraining Simple Machine Learning Algorithms for ClassificationA Tour of Machine Learning Classifiers Using scikit-learnBuilding Good Training Datasets - Data PreprocessingCompressing Data via Dimensionality ReductionLearning Best Practices for Model Evaluation and Hyperparameter TuningCombining Different Models for Ensemble LearningApplying Machine Learning to Sentiment AnalysisEmbedding a Machine Learning Model into a Web ApplicationPredicting Continuous Target Variables with Regression AnalysisWorking with Unlabeled Data - Clustering AnalysisImplementing a Multilayer Artificial Neural Network from ScratchParallelizing Neural Network Training with TensorFlow(N.B. Please use the Look Inside option to see further chapters)